NavigationControlX 1.0.3.1 — MS .Net 2.0 composite control used as a classic record navigation control with tape machine style buttons. It exposes properties for accessing index values that are enumerated through an index. A simple framework for record navigation that is not a binding control, but rather a mechanism for determining record navigation pointers. Includes buttons for First, Next, Fast Forward, Fast Reverse, Previous and Last indexes. Allows for dual speed fast scrolling in either direction. When user selects button the textbox is updated and current index is returned as a number whose value is the relative position in the object. It is up to the programmer to determine what to do with this current index number. By simply handling the public event when the current index changes the programmer can assign values to appropriate controls on a form. The current index is relative to the first record and may be 0 or 1 based indexing (default = 0). This navigation control can be dragged from the Visual Studio Tool Box or instantiated programmatically. Below is a sample piece of code in order to get started.
[image: image1.png]
[image: image2.png] — First record. Holding button down causes no additional action.
[image: image3.png] — Next record. Holding button down will fast scroll.
[image: image4.png] — Skip forward predefined number of records. Holding button down will fast forward scroll.
[image: image5.png] — Skip reverse predefined number of records. Holding button down will fast reverse scroll.
[image: image6.png] — Previous record.
[image: image7.png] — Last record. Holding button down causes no additional action.
Usage — First add a reference to NavControlX.dll in your application. Make sure to set the “Copy Local” property to true since you will need this assembly for the final output of your application. Sample VB code is listed below to help get started. AssignNavX attempts to determine the size of the object in question. It is capable of determining sizes of DataSet, DataTable, DataRow, String, List(of String), Single Dimensioned Arrays, VisualBasic.Collection, System.Collections.DictionaryBase(untested) and System.Collections.CollectionBase (untested). Otherwise TotalRecords, FirstIndex and Current index can be set manually.
Imports NameSpaceX

'Be sure to use “WithEvents” in order to capture events needed to update user form controls.

Public WithEvents NavX As NavControlX

NavX = New NavControlX

'Parameter list explained below under XML Documentation. Optional ZeroBasedIndex is ommitted.
NavX.AssignNavX (DataTableX, 1, 14,)
'Event UpdateRecordTotals is defined by user of control and its name is arbitrary.
'Although not necessary to implement, this event could be useful.

AddHandler NavX.TotalRecordsChange, AddressOf UpdateRecordTotals

'Event NavXTextBoxChange is defined by user of control and its name is arbitrary.
'Use this event to populate form controls to reflect record change.

AddHandler NavX.TextBoxChange, AddressOf NavXTextBoxChange

formX.Controls.Add(NavX)

XML Documentation — taken directly from project files.
''' <summary>

''' Events user can handle above and beyond NavControlX's internal handling.

''' TextBoxChange notifies user when the current record has changed. Control automatically updates its own text box control

''' TotRecordsChange fires when user raises such event

''' ControlSizeChange fires automatically and adjusts sizing when user changes property ControlSize.

''' </summary>
''' <remarks></remarks>
 Public Event TextBoxChange()

 Public Event TotalRecordsChange()

 Public Event ControlSizeChange()

''' <summary>

''' Initialize members variables through their respective properties.

''' </summary>

''' <remarks></remarks>

 Public Sub New()

''' <summary>

''' Used as initializer to determine size of object in first parameter.

''' </summary>

''' <param name="ObjectX"></param>

''' ObjectX can be one of the following : DataSet, DataTable, DataRow, String, List(of String), Single Dimensioned Arrays, VisualBasic.Collection,

''' System.Collections.DictionaryBase (untested), System.Collections.CollectionBase(untested)

''' <param name="ControlSize"></param>

''' Size of control. Valid range : 1-3. Default is 1.

''' <param name="RecordOffset"></param>

''' Number of records to skip when user clicks fast forward/reverse button. Default is 15.

''' <param name="ZeroBasedIndex"></param>

''' First index associated with first record pointer in navigation control. Optional, but default is 0.

''' <remarks></remarks>

''' Determines the total number of records of ObjectX

 Public Sub AssignNavX(ByVal ObjectX As Object, _

 ByVal ControlSize As Byte, _

 ByVal RecordOffset As Byte, _

 Optional ByVal ZeroBasedIndex As Boolean = True)

''' <summary>

''' Get or set the predefined size for the control. Valid range : 1-3. Default is 1.

''' </summary>

''' <value></value>

''' Value associated with control size. Any assignment outside allowable range will be adjusted accordingly.

''' <returns></returns>

''' <remarks></remarks>

''' Needs work in order to incorporate size flexibility.

 Public Property ControlSize() As Byte

''' <summary>

''' Get or set number of records to skip when user clicks fast forward/reverse button.

''' Default is 15.

''' </summary>

''' <value></value>

''' <returns></returns>

''' <remarks></remarks>

''' Property that contains number of records to skip when using fast forward or

''' fast reverse buttons on control

 Public Property RecordSkipOffset() As Byte

''' <summary>

''' Get or set first index associated with last record pointer in navigation control.

''' Set automatically, but can be manually set in order to start at a different position.

''' Default is 0.

''' </summary>

''' <value></value>

''' <returns></returns>

''' <remarks></remarks>

''' Property that contains the index of the first record. Can be either 0 or 1.

 Public Property FirstIndex() As Byte

''' <summary>

''' Get last index associated with last record pointer in navigation control.

''' Automatically set and not user definable.

''' </summary>

''' <value></value>

''' <returns></returns>

''' Value associated with last record.

''' <remarks></remarks>

''' Property that contains the last record index.number of records to skip when using

''' fast forward or fast reverse buttons on control.

 Public ReadOnly Property LastIndex() As UInt32

''' <summary>

''' Get or set current index associated with navigation control.

''' Set by user or by navigation control buttons.

''' </summary>

''' <value></value>

''' <returns></returns>

''' Value associated with current record pointer. Sets PreviousIndex

''' <remarks></remarks>

''' Property to set or get current record number

 Public Property CurrentIndex() As UInt32

''' <summary>

''' Get or set previous index associated with navigation control.

''' Not neccessarily the index next to the current index.

''' </summary>

''' <value></value>

''' <returns></returns>

''' <remarks></remarks>

''' Property to set or get previous record number. Using fast forward or fast reverse

''' button could make previous record number (previously had visual focus on form) not

''' necesarily adjacent numerically to current record number (with visual focus on form). May or

''' may not be a useful property.

 Public Property PreviousIndex() As UInt32

''' <summary>

''' Get or set total number of records. Determined automatically or set by user.

''' </summary>

''' <value></value>

''' <returns></returns>

''' Value associated with the total number of records

''' <remarks></remarks>

''' Property for setting or getting total number of records. Don't raise event

''' TextBoxChange if total number of records hasn't increased in size or if object shrinks in size.

''' However, TotalRecordsChange event should be raised anytime the total number of records changes

 Public Property TotalRecords() As UInt32

''' <summary>

''' Updates text box to reflect user pressing navigation button. Actual data object

''' could be 0 based indexing or 1 based. Offset fixes what is displayed as opposed to

''' the index value held interally.

''' </summary>

''' <remarks></remarks>

 Private Sub UpdateTextBox() Handles Me.TextBoxChange

''' <summary>
''' Get or set scrolling delay associated with control navigation buttons.

''' Range : 100 - 2000. Higher the number the longer the delay. Default is 700.

''' </summary>

''' <value></value>

''' <returns></returns>

''' <remarks></remarks>

''' Amount of delay before fast scrolling is enabled

''' Range : 100 - 2000 (good delay 700). Higher the number the longer the delay

 Public Property ScrollDelay() As UInt16

''' <summary>

''' Get or set scrolling speed associated with control navigation buttons.

''' Range : 10 - 120. Higher number means slower the scrolling. Default is 50.

''' Amount of delay before fast scrolling is enabled

''' Range : 10 - 120 (good speed 50). Higher number means slower the scrolling.

''' </summary>

Public Property ScrollSpeed() As Byte

 ''' <summary>
 ''' Get or set value to determine whether the control's background highlights when any button is pressed.
 ''' Upon button release normal background color is set. Default value is true.
 ''' <summary>
 Public Property SetBackGroundHighlightColor() As Boolean
 ''' <summary>
 ''' Get or set background highlight color.
 ''' When activated any button press will change the background color until the button is released.
 ''' Must set SetBackGroundHighlightColor property to true in order to work.
 ''' <summary>
 Public Property BackGroundHighlightColor() As System.Drawing.Color

 MessageBoxX — Another library included with the NavigationControlX.dll, this class allows for message boxes to be centered on parent form and also set a timer for the length of time the message should be displayed before disappearing. When form parameter is omitted then the message box displays center screen. Timer is disabled by default and can be set through public property “TimerOn”. Timer interval is set through property “TimerInterval “. User is allowed to make instance of MessageBoxX or use MsgX which is provided on the module level.
Two other public items worth mention on the module level are ErrMsgX which uses instance variable MsgX in order to display exceptions that are useful to developers yet readable by users. Having a centralized place for dealing with exceptions is what this method is intended for. The other is a property for limiting the width of the message boxes as a result of limiting the width of a string. An instance of the class does not make instances of messages until either overloaded method “Show” is called. Listed below are module and class declarations and XML documentation.
Public Module MessageControl

''' <summary>

'''Instance of reusable message class that can be used to show individual messages.

''' </summary>

''' <remarks></remarks>

Public MsgX As New MessageBoxX

'''<summary>

''' Used for making exception handling messages easier to use by calling sub instead of lengthy MsgBox.

''' <param name="ex"></param>

''' Exception to be displayed.

''' <param name="StringX"></param>

''' Additional information in the form of a string.

''' <param name="SupressCR"></param>

''' Boolean value for determining whether carriage returns in original message should be deleted before

''' formatting message for display box. Long messages will benefit from setting this value to True.

''' <remarks></remarks>

''' Calls instance varriable MsgX.Show

''' </summary>

 Public Sub ErrMsgX(ByVal ex As Exception, Optional ByVal StringX As String = "", Optional ByVal SupressCR As Boolean = True)

''' <summary>

''' Number of characters that can be displayed ona single line. Valid range : 100 - 150.

''' Applies to module level instance MsgX of MessageBoxX class. Does not apply to other instances of MessageBoxX.

''' <summary>

 Public Property StringMaxLength() As Byte

''' <summary>

''' Customized form for displaying messages and offer functionality not included with MsgBox or MessageBox.

''' </summary>

 Public Class MessageBoxX

 ''' <summary>

 ''' Set title used for MsgBoxTitle.
 ''' Valid values 0 - 255

 ''' </summary>

 Public Property MsgBoxTitle() As String

 ''' <summary>

 ''' Property to turn timer for message form on or off.

 ''' Return value of true will set timer and when form is displayed it will disppear when timer elapses.

 ''' When property is set TimerX is enabled or disabled accordingly.

 ''' </summary>

 Public Property TimerOn() As Boolean

 ''' <summary>

 ''' Set delay on timer in milliseconds to automatically close form.

 ''' Values Limited to 1000 - 100000 evaluate to 1 - 100 seconds.

 ''' <summary>

 Public Property TimerInterval () As Integer

 ''' <summary>

 ''' Create new instance of MessageBoxX class.

 ''' Sets TimerInterval to 5 seconds and turns timer off.

 ''' Creates tooltip for icon on message form indicating suspension of timer instructions.

 ''' </summary>

 Public Sub New()

 ''' <summary>

 ''' Display form.

 ''' </summary>

 ''' <param name="StringX"></param>

 ''' String that should be displayed.

 ''' <param name="enumX"></param>

 ''' MessageBoxIcon that should be displayed.

 ''' <remarks></remarks>

 Public Sub Show(ByVal StringX As String, Optional ByVal enumX As MessageBoxIcon = MessageBoxIcon.Information)

 ''' <summary>

 ''' Overload that allows for centering of MessageBoxX on top of parent form

 ''' </summary>

 ''' <param name="ParentFormX"></param>

 ''' Form that MsgFormX should center message around.
 ''' <param name="StringX"></param>

 ''' String that should be displayed.

 ''' <param name="enumX"></param>

 ''' MessageBoxIcon that should be displayed.

 ''' <remarks></remarks>

 Public Sub Show(ByVal ParentFormX As Form, ByVal StringX As String, Optional ByVal enumX As MessageBoxIcon = MessageBoxIcon.Information)
__

Sample.

 catch (IndexOutOfRangeException ex) { NameSpaceX.MessageControl.ErrMsgX(ex)}

 catch (OverflowException ex) { NameSpaceX.MessageControl.ErrMsgX(ex) }

 catch (ApplicationException ex) { NameSpaceX.MessageControl.ErrMsgX(ex) }

__

Another sample.

<%@ Import Namespace=" MyErrMsgX =NameSpaceX.MessageControl" %>
 catch (IndexOutOfRangeException ex) { MyErrMsgX.ErrMsgX(ex)}

 catch (OverflowException ex) { MyErrMsgX.ErrMsgX(ex) }

 catch (ApplicationException ex) { MyErrMsgX.ErrMsgX(ex) }

__

Support Information — Although free for personal usage, a donation to PayPal account UserX.Unknown@gmail.com is greatly appreciated. If you like NavigationControlX and MessageBoxX and would like support to modify either in order to suite particular needs please contact through e-mail at support@UserX.org.

